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Theoretical investigation of the rate constant and activation energy of the charge-transfer reaction in water is
performed. Equations for these kinetic characteristics of the reaction obtained in the framework of quantum
mechanical theory are presented. The equations take into account a quantum character of the O-O vibration
and the fact that the dielectric spectrum of water has an absorption in the quantum frequency range. Parameters
of these equations, such as the reactants’ interaction free energy in water,U(R), electron coupling matrix
element,Vfi , and reorganization energies are calculated in terms of appropriate models for several mutual
geometries of the reactants. For each of these geometries, the distance dependence of the parameters is
investigated and used for numerical estimation of the rate constant and activation energy. Results of the
theoretical analysis are in a reasonable agreement with experimental data.

1. Introduction

Dioxygen and its anions O2- and O2
2- play a key role in

many important direct and catalytic redox processes in the gas
phase, on metal and semiconductor surfaces, and in solutions.1,2

Superoxide and peroxide anions have been observed by many
experimental techniques and, in particular, on well-defined
surfaces (see ref 2 and references therein). These particles are
of crucial importance in biochemical processes. This accounts
for the great interest in the study of redox reactions involving
the dioxygen molecule and its anion O2

-, and a large number
of theoretical and experimental studies have been devoted to
this problem.2-10

An approximate estimation of the rate constant of the self-
exchange redox reaction in solvent

has been made using the Marcus cross-relationship and experi-
mental rate constants of cross-reactions for various oxidants.3,4

The estimation gave values that differed by as much as 15 orders
of magnitude. This led to the statement3,4 that the cross-
relationship is inapplicable to the O2/O2

- system. Also, some
important characteristics of reaction 1, such as electron matrix
element8,9 and intramolecular reorganization energy,10 have been
calculated. However, to the best our knowledge, an accurate
theoretical analysis of reaction 1 in solvent has not been fulfilled
yet.

In view of the importance of the system under discussion, in
the present work we perform accurate calculations of the rate
constant and the corresponding activation characteristics of
reaction 1 in water. Our general theoretical method is based on
the theory of nonadiabatic electron transfer originating from the

works of Dogonadze (for a review of historical aspects and
recent development, see refs 11 and 12).

The rest of our paper is organized as follows. In section 2
we discuss the physical features of the system, which are then
used to formulate a theoretical model. Equations for the rate
constant and activation energy obtained in terms of the model
by the application of the general theory for nonadiabatic
reactions in solution to the considered system are presented. In
section 3 the estimations of the parameters of these equations
are performed. Section 4 presents the results of calculations of
the rate constant and activation energy of the reaction for three
configurations of the approaching reactants O2 and O2

-. The
paper is concluded by showing the most significant results of
our theoretical analysis.

2. General Relationships

2.1. Characteristics of the Reacting System. The following
main features of the reacting system were taken into account in
the model.

1. Experimental data13 support that the O-O bond length in
the oxygen molecule is shorter than that in the superoxide by
0.14 Å. This difference (∼10%) is rather significant in order to
affect the rate constant. On the other hand, it is not very large
so that a possible anharmonicity of molecular potentials may
be neglected (for comparison, the bond extension in the Cl2/
Cl2- reaction is 0.57 Å14).

2. The O-O vibrational frequencies in dioxygen and super-
oxide are 1580 and 1073 cm-1,13 respectively. According to
criteria of quantum mechanical or classical behavior of a degree
of freedom,11,12these vibrations have to be considered in terms
of a quantum mechanical model. To reveal the importance of
quantum mechanical effects, we will compare the results
obtained in the quantum mechanical and classical description
of the O-O bond.

3. In some liquids, including water, the dielectric absorption
spectrum extends to the frequency rangeω . kT/p.11 The
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reorganization of the inertial solvent polarization affects then
both the activation barrier and the preexponential factor of the
rate constant. The former is related to a reorganization of the
classical part of the solvent polarization (ω , kT/p), whereas
the latter is connected with a tunnel reorganization of its high-
frequency part (ω . kT/p) and is proportional to exp(-σs),
whereσs is the tunnel factor for the solvent polarization.12

2.2. Reaction Rate Constant.The rate constant of the self-
exchange reaction O2/O2

- is considerably below the diffusion
limit.6 Therefore, the spatial distribution of the reactants O2 and
O2

- in the solvent may be described in terms of an equilibrium
distribution functionΦ(RB). The rate constantk may be calculated
then as a local transition probability per unit time,k(RB), at a
given distanceRB between reactants averaged over all distances
with the distribution functionΦ(RB), i.e.,

A classical Boltzmann distributionQ-1 exp[-U(RB)/(kT)] may
be used forΦ(RB), since the mutual motion of the reactants is
classical. Here,U(RB) is the interaction (free) energy for the
reactants located in a configurationRB with respect to each other
andQ is the normalization factor.

Equation 2 involves the integration over the inter-reactant
distanceR and over the angles. Thus, the transition probability
k(RB) must be calculated at an arbitrary mutual orientation of
the reactants in order to perform exact calculations of the
reaction rate constant. This is a rather complicated problem,
since a large number of mutual configurations of the reactants
has to be considered. Instead, we shall perform the upper and
lower estimations of the rate constant using the values of the
transition probability for several characteristic configurations
and performing the integration over angles as if we had
spherically symmetric systems. In other words, we shall
calculate the rate constant for these configurations as

wherey ) 4π k(R) R2. More exact estimation of the rate constant
may be obtained using some interpolation scheme between these
limits.

(a) Nonadiabatic Regime.If the electron matrix element
Vif(R) coupling the donor and acceptor states is sufficiently small
(for the criterion see eq 13 below), the reaction is nonadiabatic
and one may use general equations for the transition probability
obtained in the framework of the model of harmonic vibra-
tions.12 For the system under consideration, which involves two
harmonic intramolecular modes and inertial polarization of the
solvent, these equations take the following form:

where the factorf(ω2,ω2) is related to the frequency change of
the intramolecular modes of the reactants

andx ) pωi/(2kT), y ) pωf/(2kT), t ) (ωf)2/(ωi)2; ωi andωf

are the initial and final vibration frequencies of the O-O
oscillation (i.e., in molecule O2 and in its anion O2-, respec-

tively). The exponentBnad in eq 4 is equal to

where

Intramolecular reorganization energyEr
in is due to the exten-

sion of the O-O bond in the dioxygen molecule, and in the
harmonic approximation, it is equal to

whereµ is the effective mass of O-O vibration and∆R0 is the
difference of the equilibrium bond lengths in the O2

- anion and
in the O2 molecule at a given inter-reactant distanceR.

The solvent tunnel factorσs in eq 4 (see section 2.1) is given
by

where Ωs
qu is the characteristic fluctuation frequency for the

quantum part of the solvent polarization.Es
cl and Es

qu in eqs
6-9 are the classical and quantum solvent reorganization
energies for reaction 1 in water11,12 (see eqs 33 and 34 below).
These quantities are important characteristics of the theory, and
some models were developed to estimate the reorganization
energy. The problem of the estimation of the solvent reorganiza-
tion energy is discussed in detail in the next section.

The second derivative ofBnad over the symmetry factor in
eq 4 has the form

where

The argument in both the functionæqm and its derivativeæ′′qm
denotes a symmetry factor12 that is 1/2 for the self-exchange
reactions, i.e., for those with zero reaction free energy, in
particular for reaction 1.

Vfi is the electron matrix element that according to ref 12 is
determined as

where Ψi and Ψf are the many-electron wave functions for
reactants and products. OperatorĤ′ in eq 12 is responsible for
the electron transfer. This operator and the electron wave

Bnad(R) )
Es

cl(R)/4 + 2æqm(12)t1/2Er
in + U(R)

kT
(6)

æqm(12) ) [x coth(y/2) + y coth(x/2)]-1 (7)

Er
in ) µ(ωi)

2(∆R0)
2/2 (8)

σs )
Es

qu

pΩs
qu

(9)

|B′′| )
2Es

cl

kT
+

2t1/2Er
in

kT
|æqm′′(1/2)| (10)

æ′′qm(12) )

-xy{ x sinhx + y sinhy

[x sinh(x/2) cosh(y/2) + y sinh(y/2) cosh(x/2)]2
+

2(x2 - y2) cosh(x/2) cosh(y/2)[sinh2(x/2) - sinh2(y/2)]

[x sinh(x/2) cosh(y/2) + y sinh(y/2) cosh(x/2)]3 }
(11)

Vfi )
〈Ψf|Ĥ′|Ψi〉 - 〈Ψf|Ψi〉〈Ψi|Ĥ′|Ψi〉

1 - |〈Ψf|Ψi〉|2
(12)

k ) ∫Φ(RB) k(RB) dR (2)

k ≈ 4π∫0

∞
k(R) R2 dR≡ ∫0

∞
y(R) dR (3)

knad(R) )
(Vfi(R))2 exp[-σs]

kTp [ 2π
|B′′|]

1/2
f(ω1,ω2) exp[-Bnad(R)]

(4)

f ) 4t1/2

(tanh(x/2) + t1/2 tanh(y/2))(coth(x/2) + t1/2 coth(y/2))
(5)
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functions should be calculated atthe transitional configuration
for nuclei and for an inertial polarization of the solVent.

The reaction is nonadiabatic if the following inequality is
fulfilled:

whereσ is the tunnel factor for the whole quantum subsystem
and ωeff is the effective frequency for the motion along the
atomic coordinates. The quantum subsystem includes aquantum
part of the inertial solVent polarization. The reorganization of
the latter determines the tunnel factorσs (eq 9). The O-O
vibration frequency has an intermediate value; therefore, this
degree of freedom is neither really quantum nor classical. This
fact is exploited below in two aspects. First, we obtain an upper
estimate for the quantity 4πγ, replacingσ in eq 13 by σs.
Second, it allows us to separate approximately the O-O normal
mode from high-frequency solvent polarization. In fact, for water
we use a model based on refs 15 and 16 in which the classical
(ω , kT/p) and quantum (ω . kT/p) dielectric absorption
bands are separated by a transparency zone, with the O-O
vibration frequency within this zone.

The effective frequencyωeff in eq 13 for the liquid with a
Debye frequency spectrum may be estimated as17

whereEs
tot ) Es

cl + Es
qu is the total reorganization energy of the

inertial solvent polarization (see eq 36 below) andτL is the
longitudinal relaxation time equals to18

where ε∞ and ε0 are the high-frequency and static dielectric
constants of the solvent andτD is the Debye relaxation time.
For water,τL is of the order of 10-13 s-1 as follows from the
estimation according to this equation with the numerical values
(ref 19) for the dielectric constants andτD.

Equation 14 was derived for the case of large splitting, 2Vfi ,
of the free energy surfaces. In principle, it may result inωeff

values somewhat larger than the classical limit 4kT/p. This may
be justified to some extent for strongly adiabatic reactions, since
the conditions for overbarrier transitions are shifted toward
quantum vibrational frequencies in view of the large distortion
of the shape of the potential barrier. For nonadiabatic reactions
the rate constant is independent ofωeff (see below). However,
the nonadiabaticity criterion must be restricted by 4kT/p.

The quantityγ in eq 13 is the so-called Landau-Zener
parameter, which determines the probabilityPLZ of the state
rearrangement of the quantum subsystem (the electron and the
quantum vibrational modes), while the classical subsystem
passes through the transitional configuration with thermal
velocity, i.e.,

This quantity may be called quantum transmission coefficient
κ(R) of rate constant, similar to the electron transmission
coefficient in ref 12. In terms ofκ(R), the rate constant may be
rewritten in the following general form:

whereGa is the free activation energy. This approximate formula
describes correctly two limit cases of nonadiabatic and adiabatic
reactions. For nonadiabatic reactionsκ < 1 and is proportional
to γ. In this case, the rate constant is independent ofωeff.

(b) Adiabatic Regime.If the inequality opposite to eq 13
holds, the reaction is adiabatic. For adiabatic reactions the
quantum transmission coefficient in the last equation is equal
to 1. We shall not further discuss this regime, since, as it will
be seen from the estimations below, the Landau-Zener prob-
ability, eq 15, is small in the whole region of the inter-reactant
distances giving the major contribution to the reaction rate
constant.

(c) Classical Approximation for the O-O Vibration in the
Nonadiabatic Regime.This limit may be obtained if the
hyperbolic functions in eqs 5, 7, and 11 are replaced by their
arguments. Equation 4 then takes the form

where

2.3. Activation Energy. For k′nad and k′′nad calculated at
temperaturesT1 andT2, respectively, the Arrhenius activation
energy may be expressed as

3. Model Estimations of Parameters of the Theory

3.1. Interaction Free Energy, U(R). The semiempirical
UHF/PM3 method implemented in program SIBIQ2.4 by
Voityuk22 was used to calculateU(R). Solvent effects in Voityuk
codes is described in terms of the polarized continuum model
theory developed by Miertus, Scrocco, and Tomasi.23 The PM3
method seems to be more preferable for our system compared
to other methods using the neglect of diatomic differential
overlap (NDDO) approximation, AM1, and MNDO (modified
neglect of diatomic overlap), since it gives better results for
both the molecule O2 and its anion (Tables 1 and 2).

The quantityU(R) is determined as the difference between
free energies of the reactants O2 and O2

- in water at a distance
R, Gf(R), and at infinite distance,Gf(∞), i.e.,

The bond lengths in O2 and O2
- were optimized at fixed

intermolecular distancesR for the three mutual reactant orienta-
tions shown in Figure 1. The calculated free energiesGf are
given in Table 3. In the range of distancesR from 2.5 to 3.3 Å
the values ofU(R) for the considered configurations are fitted
very well by exponential functions plotted in Figure 2. From

4πγ ≡ (2π)3/2(Vfi)
2 exp[-σ]

kT(pωeff)x|B′′|
, 1 (13)

ωeff ) π(Es
tot

2Vif
)3/2

τL
-1 (14)

τL ) (ε∞/ε0)τD

PLZ )
1 - exp(-2πγ)

1 - 1
2

exp(-2πγ)
(15)

knad(R) )
ωeff

2π
κ(R) exp[-

Ga

kT]

knad
c (R) ) Anad

c (R) exp[-Bnad
c (R)] (16)

Bnad
c (R) )

Es
cl/4 + t

1 + t
Er

in + U(R)

kT
(17)

Anad
c )

[Vif(R)]2 exp(-σs)

kTp [2πkT

|B′′cnad|]
1/2[ 2t1/2

1 + t] (18)

|B′′cnad| )
2Es

cl + 32t2Er
in

(1 + t)3
(19)

EArr ) 2.3026
T1T2

T1 - T2
k log(k′nad

k′′nad
) (20)

U(R) ) Gf(R) - Gf(∞) (21)
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these data one can see that the interaction becomes repulsive at
R < 3.3 Å. For the P configuration the interaction free energy
increases more steeply whenR decreases because of the more
compact structure of this configuration. AtR ≈ 3.5-4 Å the
interaction between O2 and O2

- is of an attractive type, and a
very weakly bonded complex is formed. Therefore, an additional
contribution to the energy of the reaction will exist atR < 3 Å
owing to the repulsion between the reactants.

3.2. Electron Matrix Element. The Condon approxima-
tion11,12usually used to calculateVfi was applied in the present
work. Within this approximation, the dependence ofĤ′ and of
the wave functions on the solvent polarization is neglected in
calculations of the Franck-Condon factors, i.e., in the process
of obtaining the transitional configuration. The non-Condon
effects on the matrix element due to solvent have been studied

in ref 24. It was shown that these effects are of importance for
electron transfer to long distances, and apparently, it is not the
case considered in our paper. Therefore, neglecting the solvent
effect under estimation of the matrix elements for our system
seems to be justified. The explicit form ofĤ′ is not important
at the present point. In general, this operator may be written as
the sum of one-electron and two-electron terms, i.e.,

TABLE 1: Structure and Energetic Characteristics of the O2 and O2
- in the Gas Phase

method ∆Hf EAad
a R(O-O)

O2, triplet PM3 -4.17 9.1 1.169
MNDO -16.0 3.2 1.134
AM1 -27.7 -4.9 1.085
CASSCF+MRCI10 9.0 1.219
QCSD/aug-cc-pvDZ20 1.211
QCISD/aug-cc-pvDZ20 1.212
HF/6-311+G*9 1.155
MP2(full)6-311+G*9 1.222
HF/Dunning-Huzinaga/dif(s,p)/pol(d)2 1.20
SD-CI/Dunning-Huzinaga/dif(s,p)+pol(d)2 1.27
expt13 0 10.4 1.207

O2
-, doublet PM3 -13.3 1.259

MNDO -19.2 1.193
AM1 -22.8 1.174
CASSCF+MRCI10 1.362
QCSD/aug-cc-pvDZ20 1.352
QCISD/aug-cc-pvDZ20 1.353
HF/6-311+G*9 1.285
MP2(full)6-311+G*9 1.356
HF/Dunning-Huzinaga/dif(s,p)/pol(d)2 1.33
SD-CI/Dunning-Huzinaga/dif(s,p)+/pol(d)2 1.42
expt13 1.342

a EAad ) ∆Hf(O2) - ∆Hf(O2
-). ∆Hf and EAad are in kcal/mol andR in Å.

Figure 1. Mutual orientations of reactants O2 and O2
- in charge-

transfer reaction.

TABLE 2: Free Energy of Solvation of the Ion O2
- in

Water (kcal/mol)

PM3 MNDO AM1 expt21

-90.7 -91.4 -91.7 -85

TABLE 3: Free Energies Gf of Formation of the O2/O2
-

System in Water Solventa

Gf

R L configuration Z configuration P configuration

2.5 -105.3 -104.4 -100.6
2.6 -105.9 -105.7 -101.7
2.7 -107.7 -107.0 -104.3
2.8 -107.8 -107.2 -105.2
2.9 -108.1 -108.1 -105.9
3 -108.2 -108.1 -105.8
3.3 -108.8 -108.1 -108.3
3.5 -108.7 -109.4 -108.4
4 -108.4 -109.3 -108.7
5 -108.2 -109.8 -108.3
6 -108.0 -109.2 -108.3
∞ -108.6 -108.6 -108.6

a Free energies in kcal/mol,R in Å.

Figure 2. Distance dependence of free energy of interaction between
O2 and O2

- in water: (1) L configuration; (2) Z configuration; (3) P
configuration.
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whereN is the total number of electrons in the system.
First, we construct the wave functionsΨi and Ψf de-

scribing reactants (O2 + O2
-) and products (O2- + O2) of the

reaction. It is assumed that the electron transfer occurs by the
outer-sphere mechanism, and therefore, the distance between
reactants is longer compared to the intramolecular bond length.
The wave functionsΨi andΨf are expressed then as products
of the wave functions of independent fragments O2 and O2

-,
i.e.,

Here, subscripts/superscripts (l/i) and (r/i) correspond to the left
and right reactant in the left-hand side of eq 1, and (l/f) and
(r/f) correspond to the left and right reactant in the right-hand
side of the equation. In the framework of Hartree-Fock method
the valence electron wave functionsæl

i andær
i represent the 12-

and 13-electron determinants composed of initial one-electron
molecular orbitalsan. Similarly, the functionsær

f and æl
f are

composed of the final molecular orbitalsbm.
In terms of NDDO approximation the matrix element of eq

12 written with the use of functions in eq 23 reduces to a simpler
form

due to the orthogonality of the wave functionsΨi and Ψf.
Furthermore, the matrix element in this approximation involves
one-electron two-center terms of the type〈bm

l |h|am
r 〉 only,

wherean
l andbm

r are the molecular orbitals localized on the left
and right reactant, respectively (see also ref 25). We can further
simplify eq 24 using the method ofcorresponding orbital
transformation.26 As a result, we obtain an expression forVfi

in the following form

whereajD
r andbhA

l are the transformed molecular orbitals of the
donor (O2

-) and acceptor (O2) between which the electron
transfer takes place, andShjj ) 〈bhj

l|ajj
r〉. Our calculations show

that∏Shjj ≈ 1 for the reaction under consideration and the orbitals
ajD

r andbhA
l are approximately the same asaD

r andbA
l . Therefore,

we have

The MOsaD
r and bA

l are antibondingπ orbitals composed of
2px and 2pz atomic orbitals of oxygen directed perpendicular to
the moleculary axis O-O, i.e.,

where numbers 1 and 2 denote atoms in the right reactant and
numbers 3 and 4 in the left one. For numerical estimations,
three mutual orientations of the reactants O2

- and O2 shown in
Figure 1 were considered.

As in all semiempirical methods, the integrals of eq 26 are
calculated according to the Mulliken approximation

whereâi andâj are the resonance parameters of centersi andj,
andsij is the overlap integral between atomic functions. In the
PM3 method, the parameterâ for the 2p electron of the oxygen
atom is equal to-571 kcal/mol.27 Taking into account eqs 26-
29, one can obtain the following approximate expression of the
matrix element for L-orientation of the reactants:

wheresij
ππ is the integral ofπ-π type betweenp functions of

oxygen.
For Z and P orientations we find

whereê andú are the angles identified in Figure 1.
Results of calculations according to eqs 30-32 at different

distancesR are shown in Table 4 and Figure 3. The depend-
encies of the matrix element onR plotted in Figure 3 are fitted
well by exponential functionsB0 + B exp(-λR) with λ )
3.6486, 3.3467, and 3.1585 Å-1 andB ) 0.5388, 0.7877, and
2.6493 kcal/mol for L, Z, and P configurations, respectively.

Ĥ′ ) ∑
k)1

N

h(k) + ∑
k<l

N

g(k,l) (22)

Ψi ) æl
i ær

i , Ψf ) æl
f ær

f (23)

Vfi ) 〈Ψf|Ĥ′|Ψi〉 (24)

Vfi ) 〈bhA
l |h|ajD

r 〉 ∏
j*D,A

Shjj (25)

Vfi ≈ 〈bA
l |h|aD

r 〉 (26)

aD
r ) 1

2
(px1 - px2 + pz1 - pz2) (27)

bA
l ) 1

2
(px3 - px4 + pz3 - pz4) (28)

TABLE 4: Distance Dependence of Electron Matrix
Element |Vif| for O2/O2

- Systema

|Vif|
R L configuration Z configuration P configuration

2.5 0.568 0.810 2.735
2.6 0.393 0.576 1.964
2.7 0.275 0.407 1.401
2.8 0.193 0.285 1.991
2.9 0.134 0.200 0.692
3.0 0.093 0.139 0.474
3.1 0.066 0.094 0.315
3.2 0.047 0.062 0.199
3.3 0.033 0.040 0.115

a Vif in kcal/mol; R in Å (see Figure 3).

Figure 3. Distance dependencies of matrix element: (1) L configu-
ration; (2) Z configuration; (3) P configuration.

〈øi|h|øj〉 ) (âi + âj)sij/2 (29)

Vfi
L ) 1

2
âO

2p{|s13
ππ| - |s23

ππ| - |s14
ππ| + |s24

ππ|} (30)

Vfi
Z ) 1

4
âO

2p{|s13
σσ| - |s13

ππ| - 2|s23
σσ| cos2 ú +

2|s23
ππ|(1 + sin2 ú) + |s24

σσ| cos2 ê - |s24
ππ| sin2 ê} (31)

Vfi
P ) 1

2
âO

2p{-|s13
σσ| + |s13

ππ| - |s23
ππ|(1 + sin2 ú) +

|s23
σσ| cos2 ú|} (32)
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These large values of the decay factorλ seem to be typical for
the direct overlap of donor and acceptor orbitals (electron
transfer to a short distances). They are in line with the values
of λ (2.4-3.2 Å-1) calculated by semiempirical and ab initio
methods in refs 28-33 for other systems with the direct overlap.
In contrast to that, long electron transfers (usually mediated by
bridge groups) are characterized by lower values of the decay
factor λ e 1 Å-1 (see review in ref 38).

One can see that the value of the electron matrix element at
a givenR is highest for the P configuration. It is due to the
overlaps ofσ-σ type for two pairs of atoms. Our semiempirical
values of the matrix element are significantly smaller than those
calculated by the ab initio method in ref 8, which are largely
overestimated, and agree reasonably with ab initio calculations9

involving electron correlation.
3.3. Energies of the Solvent Reorganization. The classical

and quantum reorganization energies of the solvent in the
equations for the rate constant are determined as follows:33-35

∆Gsolv(εk) here is the solvation energy ofan effectiVe dipole
corresponding to the transfer of one electron from donor to
acceptor in a solvent with dielectric constantεk. For the reaction
under consideration it is the solvation energy of the reaction
complex with the charge distribution

In fact, eqs 33 and 34 assume a certain model for the solvent
polarization in which the dielectric absorption bands are sep-
arated by the transparency zones.12 The quantitiesε∞ and ε0

are then the optical (high frequency) and static dielectric
constants, respectively, andεm is the dielectric constant in the
transparency zone separating the classical (ω < 4kT/p) and
quantum (ω > 4kT/p) absorption bands. The values ofε∞ and
ε0 for water are 1.78 and 78, respectively. However, the
absorption bands overlap, and therefore,εm is an effective
quantity that may be estimated using the following approximate
procedure. The rigorous calculations12 of the electron-transfer
rate in a uniform local dielectric, using the continuous dielectric
spectrum of water, resulted in the expression for the transition
probability, which involves classical and quantum reorganization
energies of the inertial polarization

where

Comparison of eqs 33 and 34 with eq 36 for the case of a
uniform dielectric gives an estimateεm ) 2.237. This value is
used below for the calculation of the solvent reorganization
parameters in the presence of cavities in the dielectric.

A cavity model taking into account the nonspherical form of
the reactants O2 and O2

- should be used for the calculation of
the solvent reorganization parameters in terms of eqs 33 and
34. We employ some of the cavity models previously developed
in refs 38-42. For L and Z configurations the model of prolate
ellipsoidal cavity (“sausage” cavity) formed by solvent mol-

ecules seems to be relevant, while for the P configuration we
used the model of an oblate spheroid.

The problem of the estimation of the semiaxes,a andb, of
the spheroid cavity, in which the reactants forming the reac-
tion complex are situated, is rather ambiguous. First, we consider
the estimation of axes lengths of the sausage cavity for the L
configuration (see Figure 4a). Let us assume that the reactants
represent effective spheres tangential to the surface of an
ellipsoid at an arbitrary distanceR between the reactants. This
distance may be smaller or greater than the sum of van der
Waals radiirvdw(O) of contacting oxygen atoms 1 and 3. The
effective radius of such a sphere may be assumed to be equal
to rs ) l/2 + rvdw(O) ) 2.035 Å (wherel is the O-O bond
length). Then, using the tangency condition for the sphere and
ellipsoid, the semiaxes for a given form of ellipsoid characterized
by the relationδ ) a/b may be estimated. Now, the reorganiza-
tion energiesEs

cl andEs
qu may be calculated using the formulas

of ref 41 based on general eqs 33 and 34. The obtained results
with δ ) 2 for the charge distribution (eq 35) are given in the
second and third columns of Table 5. It is worth noting that the
variation ofδ from 1.8 to 2.2 results in a rather small variation
of the solvent reorganization energies.

For the Z configuration (Figure 4b) the procedure of estima-
tion of the sausage cavity geometrical parameters is similar to
that for the L configuration, and the corresponding solvent
reorganization energies are listed in the fourth and fifth columns
of Table 5. In the case of the P configuration (Figure 4c) the
semiaxes of the oblate ellipsoid,a andb, were estimated to be
equal toa ) R/2 + rs andb ) rs. The results of calculations
for the cavity of this form according to formulas from ref 42
are given in the two last columns of Table 5.

3.4. Intramolecular Reorganization Energy. Since both
vibration frequencies and equilibrium lengths of the oxygen and
superoxide anion depend on the distanceR and the mutual

Figure 4. Models of prolate (a, b) and oblate (c) ellipsoids. (a) L
configuration: δ ) a/b ) 2; x0 ) R/2 + l/2; b ) [rs

2 + x0
2/(δ2 -

1)]1/2; q1 ) q2 ) |e|/2; q3 ) q4 ) -|e|/2. (b) Z configuration:x0 )
1/2[R2 + l2]1/2; δ ) 2; q1 ) q2 ) |e|/2; q3 ) q4 ) -|e|/2. (c) P
configuration: a ) R/2 + rs; b ) rs ) 2.035 Å.a andb are semiaxes
of ellipsoid.

Es
cl ) ∆Gsolv(εm) - ∆Gsolv(ε0) (33)

Es
qu ) ∆Gsolv(ε∞) - ∆Gsolv(εm) (34)

[O-1/2-O-1/2‚‚‚‚‚‚O1/2-O1/2] (35)

Es
cl ≈ 0.8Es

tot, Es
qu ≈ 0.2Es

tot (36)

Es
tot ) 1

8π( 1
ε∞

- 1
ε0

)∫ d3r D2(r)
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orientation of O2 and O2
-, the intramolecular reorganization

energy also depends on these characteristics. However, our
calculations show that in the considered range ofR values
between 2.5 and 3.3 Å these structure parameters change very
little. For example, in the L configuration the bond length of
the superoxide anion decreases by∼0.0003 Å and that of O2
increases by∼0.001 Å whenR changes from 3.3 to 2.5 Å. The
corresponding variations of bond lengths in the P configuration
amount to∼0.0013 and∼0.0023 Å. These increments ofR
obviously do not affect noticeably the intramolecular reorga-
nization energy in the considered range of intermolecular
distances and may be neglected. Therefore, the constant value
of Er

in is accepted in our analysis of the distance dependence of
the local rate constant.

Indeed, we used the experimental structure characteristics of
the reactants (see Table 1 and ref 10) for numerical calculation
of the intramolecular reorganization energy according to eq 6,
since the PM3 method does not provide accurate vibration
frequencies and∆R0. The value ofEr

in obtained in this way is
equal to 17 kcal/mol. For the experimental values10 of the
vibration frequencies (1580 cm-1 for the molecule and 1080
cm-1 for the anion), the factort in eqs 5 and 6 and the following
equations is equal to 0.4727.

4. Results for the Rate Constant Calculations

The first point of importance consists of the fact that reaction
1 is nonadiabatic in the whole region of distancesR, giving a
noticeable contribution to the transition probability. It follows
from our calculations according to eq 15 of the Landau-Zener
probability. For L and Z configurations the quantityPLZ is found
to be much smaller than 1 even at the minimum distancesR
between reactants (Figure 5a), and for the P configurationPLZ

decreases from∼0.4 atR ) 2.5 Å to∼3 × 10-6 at R) 3.3 Å
(Figure 5b). Therefore, the application of the nonadiabatic theory
for the local rate constant calculations is justified. The results
for the local rate constantsk(R) at distancesR in the range
between 2.5 and 3.3 Å obtained with the use of the above
equations and parameters of the theory are plotted in Figure 6.
One can see that the distanceR* between reactants, at which
the electron-transfer proceeds with maximal probability, is equal
to 2.7-2.9 Å depending on the mutual configuration of the
reactants. This distance is approximately equal to the sum of
van der Waals radii of interacting oxygen atoms (∼2.8 Å);
i.e., it has a reasonable value. The obtained results show that
there is a contribution in the rate constant due to the repulsion
of the electron shells of the reactants at this value ofR* that

may amount to 3 kcal/mol for the P configuration (for the L
configuration it is about 0.6-1 kcal/mol). This fact was usually
not taken into account when considering the kinetics of this
reaction.

Now, the rate constant for each configuration may be
calculated according to eq 4 of the nonadiabatic theory by
numerical integration of the graphics in Figure 6. It gives 28,
296, and 231 M-1 s-1 for the L, Z, and P mutual orientations
of the reactants, respectively. These values are in a reasonable
agreement with the experimental rate constant in water of 450
( 160 M-1 s-1.6 To estimate the importance of the quantum
mechanical effects, we calculated the reaction rate constant
according to eqs 16-19 (Figure 7). In this case the obtained
values are lower than that from quantum mechanical calculations
by 1.3-1.6 orders of magnitude depending on the mutual con-
figuration of the reactants. This difference is mainly due to the
different activation energies. For example, the quantum me-
chanical calculations atR ) R* yield the activation energies of
9.5, 8.5, and 9.6 kcal/mol for the L, Z, and P configurations,
respectively. The corresponding values in the classical approx-
imation for the O-O bond are 14.4, 13.4, and 14.5 kcal/mol.

It should be noted that the quantum mechanical behavior of
the O-O bond and nonadiabatic character of the O2/O2

- self-
exchange reaction may result in violation of the Marcus cross-
relationship. The point is that the approximate Marcus relation-
ship assumes reactants to be classical oscillators with unchanged
vibration frequencies. Apparently, it is not the case for the
considered system.

TABLE 5: Solvent Reorganization EnergiesEs
cl and Es

qu for
O2/O2

- System in Watera

L configuration P configuration Z configuration

R Es
cl Es

qu Es
cl Es

qu Es
cl Es

qu

2.5 28.5 6.6 21.6 4.7 24.1 5.4
2.6 29.3 6.8 22.6 4.9 25.0 5.6
2.7 30.0 7.0 23.6 5.1 25.9 5.9
2.8 30.7 7.2 24.5 5.3 26.8 6.0
2.9 31.3 7.3 25.5 5.4 27.7 6.2
3.0 33.9 7.5 25.9 5.6 28.5 6.4
3.1 32.5 7.6 27.3 5.7 29.3 6.6
3.2 33.1 7.8 28.2 5.8 30.2 6.8
3.3 33.7 7.9 29.1 5.9 30.8 7.0

a Energies in kcal/mol,R in Å. Es
cl is the reorganization energy for

classical oscillators of water, andEs
qu is that for quantum ones. The

reorganization energies were calculated in the cavity model (for details
see text).

Figure 5. Distance dependence of the total transmission coefficient
κt: (a) L configuration (curve 1) and Z configuration (curve 2); (b) P
configuration.
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5. Conclusions

In this paper we present the results of calculations of the
reaction rate constant and activation energy for the electron
transfer in the dioxygen/superoxide anion system in water for
several typical configurations of the precursor reaction complex.
The aim was to take into account all factors that can affect the
value of the reaction rate constant. They are the following.

The electron matrix element. It was calculated by the PM3
semiempirical method in the Condon approximation with the
use of electron-localized diabatic wave functions.

Reorganization of the classical and quantum parts of the
inertial solVent polarization.Models of spheroid cavity were
used to calculate these quantities. The quantum part of the
solvent polarization and the electron matrix element determine
the rearrangement probability of the solvent quantum vibration
modes and of the electron state, and the adiabatic or nonadiabatic
character of the reaction. At this point the main conclusion is
that the reaction is nonadiabatic at all inter-reactant distances
that contribute significantly to the rate constant. The reorganiza-
tion energy of the classical solvent polarization is in the range
∼23-34 kcal/mol depending on the distanceR and the mutual
configuration of the reactants.

The intramolecular reorganizationrelated to the change of
the O-O bond lengths in both reactants upon electron transfer.

Taking into account the quantum mechanical character of the
O-O vibrations leads to a considerable increase of the rate
constant compared to the classical approach. The difference
amounts to 1.3-1.6 orders of magnitude and is due mainly to
the fact that the classical approximation overestimates the
activation energy by∼4-5 kcal/mol.

The intermolecular repulsion of reactantsin solvent. It gives
a contribution to the activation barrier, which amounts to a few
kcal/mol atR < R*.

The account for all these factors allows us to obtain
reasonable values of the reaction rate constant compared to the
experimental ones.
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